Reducing the contact time using macro anisotropic superhydrophobic surfaces — effect of parallel wire spacing on the drop impact
نویسندگان
چکیده
Surfaces designed to reduce the contact time of impacting droplets are potentially of great importance for fundamental science and technological applications, for example, anti-icing, self-cleaning and heating transfer applications. Previous studies have shown that the contact time can be reduced via introducing one or several crossing macroscale wires on superhydrophobic surfaces (SHSs). However, the impacts that strike far from the wires (off-center impacts) have contact times that are equal to those obtained on SHSs. Here we demonstrate that this problem can be largely solved by using macro anisotropic SHSs (macroaniso-SHSs)—in which the wires are parallel and macroscaled. The droplet contact time depends on the spacing between the macrostripes and is remarkably reduced by 40–50% when the spacing is comparable to the droplet size. Obvious differences in the contact time are not observed for impacts that are centered on the stripe and in the groove. The impacts centered in the groove produce new hydrodynamics that are characterized by extended spreading, easy break up and bouncing in a flying-eagle configuration. The study discusses the underlying mechanisms of the impact processes. Moreover, the effect of parallel wires on the contact time is discussed by comparing the droplet impact data for grooved rice leaves and non-grooved cabbage leaves. The enhanced drop mobility associated with the macro-aniso-SHSs should be very useful in many industrial applications. NPG Asia Materials (2017) 9, e415; doi:10.1038/am.2017.122; published online 4 August 2017
منابع مشابه
Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures
Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophob...
متن کاملWettability and Contact Time on a Biomimetic Superhydrophobic Surface
Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less...
متن کاملCutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife
A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a...
متن کاملThe Study of Super Hydrophobic Surfaces Using High Speed Shadowgraphy
The aim of this article is the measurement of the basic characteristic of superhydrophobic surfaces using high speed shadowgraphy. Here we describe the novel patented system for the industrial production of superhydrophobic surfaces. These surfaces were investigated with two optically based measurement methods: impinging drop and inclined wall. The results of the visualization and analysis help...
متن کاملAnisotropy in the wetting of rough surfaces.
Surface roughness amplifies the water-repellency of hydrophobic materials. If the roughness geometry is, on average, isotropic then the shape of a sessile drop is almost spherical and the apparent contact angle of the drop on the rough surface is nearly uniform along the contact line. If the roughness geometry is not isotropic, e.g., parallel grooves, then the apparent contact angle is no longe...
متن کامل